How to select the right industrial chiller
It is an established fact that industrial chillers are an essential part of manufacturing procedures, especially where production downtime, due to excess heat, is not an option. In recent times there have been major advances and innovations in the design, performance, and efficiency of industrial chiller concepts. The significance of these developments is included in this guide.
Why the right choice of chiller is important
Specifying a chiller installation
Process fluid performance
Cooling fluid temperature
Process flow and pressure requirements
-
While pump life is a primary consideration when configuring an industrial cooling system, pressure loss across the system and the necessary flow rate must first be determined by the pump size and performance.
Pressure: An undersized pump will reduce the fluid flow rate through the entire cooling loop. If the chiller has been equipped with internal pressure relief, the flow will be diverted around the process and back into the chiller. If there is no internal pressure relief, the pump will attempt to provide the necessary pressure and run at what is referred to as dead-head pressure, or limit. When this state occurs, the pump’s life can be drastically reduced; liquid ceases to flow and the liquid in the pump becomes hot, eventually vaporising and disrupting the pump’s ability to cool leading to excessive wear to bearings, seals, and impellers. Determining the pressure loss across a system requires siting pressure gauges at the process’s inlet and outlet, then applying pump pressure to obtain values at the desired flow rate.
Flow rate: Inadequate flow through the process will yield inadequate heat transfer so the flow will not remove the heat necessary for safe operation of the process. As the fluid temperature increases beyond the setpoint, the surface/component temperatures also will continue to rise until a steady-state temperature that is greater than the initial setpoint is reached. Most chiller systems will detail the pressure and flow requirements. When specifying the necessary heat load removal as part of the design, it is important to account for all hoses, fittings, connections, and elevation changes integral to the system. These ancillary features can significantly increase pressure requirements if not sized appropriately.
Chiller operating environment
-
Ambient Temperature. An air-cooled chiller’s ability to dissipate heat is affected by the ambient temperature. This is because the refrigeration system uses the ambient air/refrigerant temperature gradient to induce heat transfer for the condensation process. A rising ambient air temperature decreases the temperature differential (ΔT) and, subsequently, reduces the total heat transfer. If the chiller uses a liquid-cooled condenser, high ambient temperatures can still have negative effects on key components such as the compressor, pump, and electronics. These components generate heat during operation, and elevated temperatures will shorten their lifetime. As a guideline, the typical maximum ambient temperature for non-exterior rated chillers is 40°C.
Spatial Constraints: In order to maintain the proper ambient air temperature, it is important to provide adequate air circulation space around the chiller. Without proper airflow, recirculation of an inadequate volume of air rapidly heats it up. This affects chiller performance and potentially can damage the chiller unit.
Why size is important
Selecting a correctly sized chiller is a crucial decision. An undersized chiller will always be a problem – never able to properly cool the process equipment and the process water temperature will not be stable. In contrast, an oversized chiller will never be able to run at its most efficient level and prove more costly to operate. To determine the correct size of unit for the application it is necessary to know the rate of flow and the heat energy that the process equipment is adding to the cooling medium, i.e., the change in temperature between the inlet and outlet water, expressed as the ∆T. The formula for calculation purposes is: heat energy per second (or more commonly known as power) = mass flow rate × specific heat capacity × change in temperature (∆T)’. The specific heat capacity of the water is nominally expressed as 4.2 kJ / kg K but if it contains a percentage of glycol additives that value is increased to 4.8 kJ / kg. K Note: 1K = 1°C and the density of water is 1 i.e.,1l of water volume = 1kg of water mass. Here is an example of the formula application to determine the correct kW sized chiller to handle a water flow rate of 2.36 l/s (8.5 m3/hr) with a temperature change of 5°C: heat energy per second (kJ/s or kW) = 2.36 l/s (Flow Rate) X 5°C (∆T) X 4.2 kJ /kg K (Specific Heat Capacity of pure water), chiller size required = 49.6 kW. Alternatively, the heat load to be cooled may already be known in which case the formula can be re-arranged to determine the temperature difference (∆T) that can be attained with different flow rates (achievable with different pump sizes). There may be other circumstances that can influence size choice. Planning for future plant expansion, exposure to high ambient temperatures, or location at high altitudes, could all lead to the specification of a different size of unit.
Maintenance, safety, and control
Conclusion
In general, potential users of an industrial chiller system are advised to take into account the conditions in which the process chiller will be used, and the process for which it will be used. This will help to identify the features most needed in the system.
It is also wise to consider the possibility of expansion in the future. If the amount of heat output by one machine is increased, then the cooling power of the chiller has to be increased accordingly. If there is a variable heat rate, choose the kW rating that can handle the highest heat output.
In summary, taking all of these considerations on board, recognising the important technological advances, and the availability of chiller suppliers who incorporate them in their product offering, all helps in determining the optimal industrial cooling system for any particular application.
Related products
Improved air compressor control and economy: Elektronikon®
Our IoT-enabled Elektronikon® compressor controller system helps you monitor and control your processes via mobile devices using SMARTlink. Increased profitability, energy savings: see how
Compressed air, vacuum and industrial gas products
For energy efficient compressed air and rough vacuum equipment for any application, including air treatment accessories, industrial gas generators and pipework
Air compressor service
Our certified service technicians and high quality parts provide maximum availability of your compressed air equipment. Our energy consultants ensure your total operating cost stays optimized at all times.