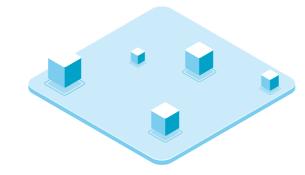


PAVIMENTO

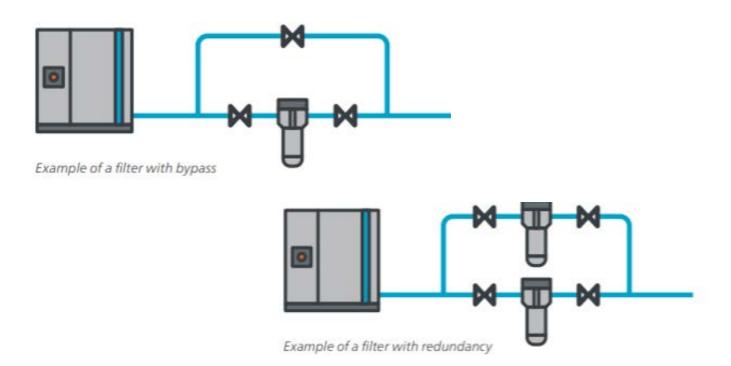

O equipamento deve ser instalado sobre um pavimento nivelado e com capacidade de suportar as cargas exercidas desse mesmo equipamento.

No caso de instalar o equipamento sobre maciço, a área deste não deve ser superior ao da base do equipamento.

A fim de evitar a poluição dos solos, o pavimento deverá ser impermeável a óleos.

ESPAÇO

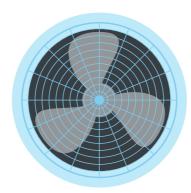
À volta de cada equipamento, deve guardar um espaço que permita a inspecção e acções de manutenção ao equipamento em todo o seu perímetro, ter ventilação adequada e permitir inspeções regulares e manutenção. Ter também em atenção que o equipamento deve estar disposto por forma a garantir a sua possível retirada da sala. Na zona de instalação dos equipamentos, por segurança, deve ser evitado a existências de superfícies pontiagudas e ou cortantes.


TUBAGEM

Devem ser consideradas duas exigências na construção da rede de ar comprimido para assegurar uma operação confiável e eficiente:

- 1. Tubagem com diâmetro adequado de modo a se conseguir a mais baixa queda de pressão no traçado da rede de ar comprimido.
- 2. A inexistência de fugas.
- 3. A tubagem e outras peças com uma temperatura superior a 70 °C (158 °F) e que possam ser tocadas acidentalmente durante o funcionamento normal têm ser protegidas ou isoladas. Outras tubagens com temperaturas elevadas têm de ser bem assinaladas.

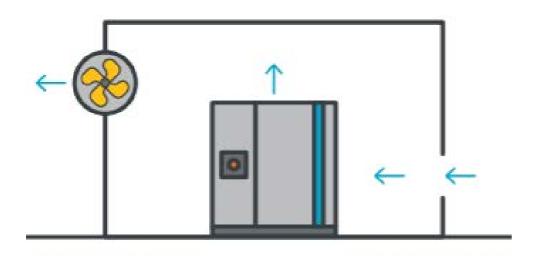
Aconselhamos a construção de bypass na ligação a reservatórios, filtros e secadores.



VENTILAÇÃO e AREJAMENTO

O ar de exaustão proveniente do equipamentos não deve permanecer no mesmo espaço dos equipamentos. Este deve ser direcionado por meio de condutas de forma a não permitir recirculação de ar.

O ar de ventilação, dos compressores arrefecidos a ar, contém cerca de 100% de energia consumida pelo motor eléctrico, em forma de calor.


Já em equipamentos (compressores e/ou secadores) arrefecidos a água, o caudal de ar de ventilação transporta entre 8% a 15% da energia ao veio do motor, sendo o restante transferido para a água.

Deve ser garantido o correcto arejamento do espaço de instalação do sistema de ar comprimido, de forma a permitir a renovação de ar. O ar aspirado deve estar isento de gases, vapores e partículas inflamáveis, como, por exemplo, dissolventes, que possam provocar incêndios internos ou explosões.

Existem pelo menos 2 alternativas para proceder à ventilação da sala:

Instalação de ventilador para exaustão de ar quente

Fórmula de cálculo

Compressores arrefecidos a ar:

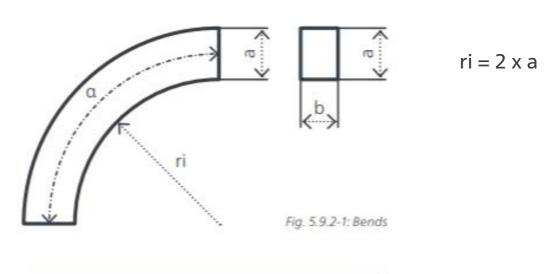
Compressores arrefecidos a água:

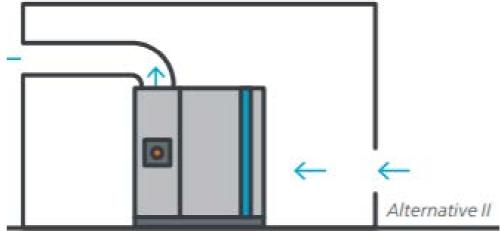
$$QV = 0.92 \frac{P}{\Delta T}$$

$$QV = 0.1 \frac{P}{\Delta T}$$

QV - caudal de ventilação requerido (m³/s)

P - potência nominal (kW)


 ΔT - diferença, máxima, de temperatura entre o exterior e a sala de compressores (aconselhável 5° C), em °C


Instalação de conduta de exaustão

A conduta de exaustão deverá manter as mesmas dimensões da grelha de saída de ar de arrefecimento. Deverá ser dirigida para o tecto ou parede mais próxima de modo a diminuir ao máximo o nº de curvas.

As curvas deverão ter o maior raio possível - 2 vezes a dimensão da conduta.

A queda de pressão estática não deverá exceder os 30 Pa

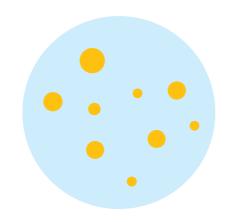
A sala deve possuir janelas para admissão de ar. Deverá ser considerada uma velocidade de 3 m/s para o ar à passagem pelas janelas.

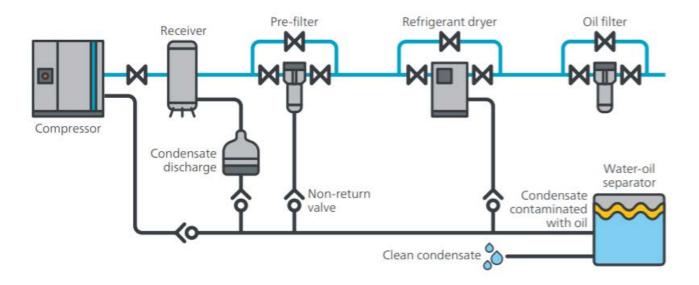
Cálculo da área total para a admissão de ar: $A = \frac{QV}{V}$

A - Área livre (m²)

QV - volume de ar de ventilação (m³/s)

v - velocidade ($\leq 3 \text{ m/s}$)




PURGAS

É recomendável ligar cada equipamento, de forma independente, a um colector. Cada saída de condensados deve ser ligada de forma a evitar fugas de condensados para o exterior, provocando possiveis derrames.

Caso o compressor não seja isento de óleo, o colector deverá ser dirigido a um separador óleo/água.

Os condensados provenientes de sistemas isentos de óleo, não necessitam de qualquer tratamento, podendo ser encaminhadas para a rede colector de águas pluviais.

ALIMENTAÇÃO ELÉCTRICA

Os cabos eléctricos devem ser dimensionados por forma a garantir que a resistência à passagem de corrente, seja a menor possivel.

Cable section	Ambient temperature												
	30°C	40°C	45°C	50°C	55°C								
4 mm²	< 27 A	< 23 A	< 21 A	< 19 A	< 16 A								
6 mm²	< 34 A	< 30 A	< 27 A	< 24 A	<21 A								
10 mm ²	< 46 A	< 40 A	<36 A	< 33 A	< 28 A								
16 mm²	< 62 A	< 54 A	< 49 A	< 44 A	< 38 A								
25 mm ²	< 80 A	< 70 A	<63 A	< 57 A	< 49 A								
35 mm²	<99 A	< 86 A	< 78 A	< 70 A	< 60 A								
50 mm ²	< 118 A	< 103 A	< 93 A	< 84 A	<72 A								
70 mm²	< 149 A	< 130 A	< 118 A	< 106 A	<91 A								
95 mm²	< 179 A	< 156 A	< 141 A	< 127 A	< 109 A								
120 mm²	< 206 A	< 179 A	< 163 A	< 146 A	< 126 A								

Correntes Absorvidas por Motores - Valores Aproximados																								
Potência Nominal - kW	1,1	1,5	2,2	3	4	5,5	7,5	11	15	18,5	22	26	30	37	45	55	75	90	110	132	160	200	250	300
Corrente Monofásica (230 V) - A	8,8	12	17,5	22,5	28																			
Corrente Trifásica (400V) - A	3,1	4	5,5	6,7	8,8	11,6	14,8	23,6	31	36,5	43,5	51	58	74	89	104	139	185	209	245	300	373	460	525

ILUMINAÇÃO DO ESPAÇO

Deve ser considerada a iluminação do espaço circundante ao sistema de produção de ar comprimido de forma a evitar zonas de sombra.

O nível luminoso deve estar compreendido entre os 500 lux e os 850 lux e a temperatura da luz entre os 4500K e os 5500k.

OPERADORES

- 1. Os trabalhos de instalação, operação, manutenção e reparação apenas devem ser efectuados por técnicos autorizados e com formação e competência para tal.
- 2. Usar sempre óculos, roupa adequada, luvas e calçado de proteção. Usar auriculares de proteção em caso de ambientes ruidosos.
- 3. Utilizar ferramentas apropriadas e peças originais.

