

Filtros de aire comprimido

Comprometidos con una productividad superior

El aire comprimido sin tratar puede estar contaminado con polvo, agua y aceite. Esto convierte a la filtración en un componente esencial de tu sistema de aire. Atlas Copco ha desarrollado soluciones de filtración que cuidan tus herramientas neumáticas, tus procesos y productos finales. Nuestra amplia oferta incluye diversos tipos de filtros y una gama de grados de pureza para satisfacer tus requisitos específicos.

Calidad de filtración insuperable

Expertos internos

Debido a la gran importancia de la filtración , Atlas Copco trabaja en estrecha colaboración con universidades , autoridades regulativas y proveedores de materiales de alta calidad para filtros . Nuestros científicos e ingenieros están , por lo tanto , bien informados sobre los últimos avances e innovaciones en la industria . Cada paso del proceso de ingeniería se ejecuta de manera meticulosa , desde la investigación básica hasta los diseños de prototipos y el análisis de fin devida.

Control de calidad riguroso

Para garantizar un rendimiento y confiabilidad óptimos, todos los filtros de Atlas Copco se someten a rigurosas certificaciones internas y externas, así como a controles de calidad. Gracias a nuestras instalaciones de prueba, realizamos todas las certificaciones internamente, incluyendo pruebas supervisadas por partes independientes. Con la capacidad de probar filtros según todas las normas pertinentes y en condiciones de vida real, nuestra competencia sigue creciendo con cada nuevo avance en el negocio de la filtración.

Certified peace of mind

Diseñado y construido en Europea

Toda nuestra gama de filtros se diseña y fabrica en las instalaciones europeas de Atlas Copco, utilizando las líneas de producción y los controles de calidad más avanzados. Esta proximidad geográfica nos permite mantener la I&D, la ingeniería, la producción, así como las pruebas conjuntas y la agilización de la colaboración.

Los filtros de Atlas Copco están certificados para cubrir los siguientes estándares de ISO:

- ISO 8573-1:2010: Aire comprimido Contaminantes y clases de pureza
- ISO 8573-2:2018: Aire comprimido Métodos de ensayo para el contenido de aerosoles de aceite
- ISO 8573-4:2019: Aire comprimido Métodos de ensayo para el contenido de partículas fijas
- ISO 8573-5: 2001: Aire comprimido Métodos de ensayo para el contenido de vapor de aceite y disolventes orgánicos
- ISO 12500-1:2007: Filtros para aire comprimido Métodos de ensayo Aerosoles de aceite
- ISO 12500-2:2007: Filtros para aire comprimido Métodos de ensayo Vapores de aceite
- ISO 12500-3:2009: Filtros para aire comprimido Métodos de ensayo Partículas

Avanzada tecnología de filtración

La tecnología de filtración importa si necesitas una calidad de aire constante con bajos requerimientos de mantenimiento. A lo largo de los años, Atlas Copco ha innovado en los tipos, diseños, procesos y medios filtrantes para ofrecerte el mejor rendimiento, fiabilidad y vida útil.

Tapón inferior del elemento (UD+, PD+ & DD+)

Un sistema de drenaje patentado facilita la eliminación del aceite del elemento filtrante, eliminando la "banda húmeda" en la parte inferior del elemento que puede comprometer el rendimiento y vida útil del filtro

Indicador de servicio

Para garantizar una calidad de aire constante, el indicador de servicio permite comprobar fácilmente las horas de funcionamiento del filtro, la presión diferencial y el estado de mantenimiento . Puede, incluso, mandar una alerta remota.

Tapón superior del elemento

El tapón superior guía el flujo de aire de forma óptima hacia el interior del cartucho y hacia la salida para reducir la caída de presión y el consumo total de energía del filtro.

Derivación inPASS ™

El revolucionaro bypass de Atlas Copco puede utilizarse para redirigir el aire durante el mantenimiento del filtro y garantizar un flujo ininterrumpido. Es un invento invisible que proporciona grandes ahorros operativos y de inversión:

- Realiza el mantenimiento de los filtros en cualquier momento, incluso en horas de trabajo.
- Flujo de aire asegurado para producir durante el mantenimiento
- Reducción del tiempo de mantenimiento, ya que no es necesario parar el sistema de aire.
- Elimina los costos de una tubería externa de desviación.
- Reduce el riesgo de fugas, lo que se traduce en menores costes energéticos.

Cilindros de acero inoxidable resistentes y duraderos

Tapas de diferentes colores para reconocer fácilmente el grado de filtración

Desagüe flotante de fácil mantenimiento

Nuestro desagüe flotante anti-adherente expulsa automáticamente todo el aceite y agua capturados . Para ahorrarte tiempo y dinero, nuestros desagües pueden repararse fácilmente sin desmontar el contenedor del filtro . La conexión roscada del desagüe a el contenedor también facilita la sustitución del desagüe flotante por uno externo manual o automático.

4 - Filtros de aire comprimido Atlas Copco — Filtros de aire comprimido Atlas Copco - 5

Filtración completa

La suciedad, el agua y el aceite no son rivales para los filtros de Atlas Copco. Están diseñados para eliminar uno o más de los siguientes contaminantes:

- SUCIEDAD: polvo, partículas sólidas, partículas de óxido, microorganismos.
- AGUA: agua líquida condensada, aerosoles de agua, condensados ácidos.
- ACEITE: aceite líquido, aerosol de aceite, vapor de hidrocarburo.

Aerosol de aceite Polvo húmedo

Una solución para cada aplicación

Dependiendo del uso y la aplicación, pueden ser necesarias diferentes purezas del aire comprimido. La tabla siguiente muestra distintas clases de pureza de aire ISO 8573-1:2010 y las combinaciones de filtro y secador de Atlas Copco que cumplen estas clases.

Clase	Solid p	articles	Agua	Aceite					
ISO 8573-1:2010	Condiciones húmedas	Condiciones secas	Agua	(aerosol, líquid	o, vapor)				
	SMT	r-G*	Según especifique el cliente**	Compresor exent	o de aceite				
1	DD+ & PD+	DDp+&PDp+	Secador de adsorción	DD+ & PD+ &	QD+/QDT				
	UD+	υυρ+α ευρ+	Secador de adsorcion	UD+ &	QD+/QDT				
2	DD+	DDp+	Secador de adsorción, secador	DD+ & PD+					
			de tambor rotativo	UD+					
3	DD+	DDp+	Secador de adsorción, membrana secador, secador de tambor rotativo	DD+					
4	DD+	DDp+	Secador de membrana, secador frigorífico	DD+					
5	DD+	DDp+	Secador de membrana, secador frigorífico	-					
6	-	-	Secador de membrana, secador frigorífico	-					

Clase de pureza del aire ISO 8573-1:2010 [1:-:2]

Ejemplos de instalaciones típicas

A Compresor - UD+

В	Compresor - UD+ - Secador frigorífico	Clase de pureza del aire ISO 8573-1:2010 [1:4:2]*
С	Compresor - UD+ - Secador frigorífico - QDT - DDp+	Clase de pureza del aire ISO 8573-1:2010 [2:4:1]
D	Compresor - UD+ - Secador de adsorción - DDp+	Clase de pureza del aire ISO 8573-1:2010 [2:2:2]
E	Compresor - UD+ - Secador de adsorción - QDT - DDp+ - PDp+	Clase de pureza del aire ISO 8573-1:2010 [1:2:1]
	A B B	C
 Comp Filtro 		5. Filtro DDp+6. Filtro PDp+

Filtros de aire comprimido Atlas Copco - 7 6 - Filtros de aire comprimido Atlas Copco

^{*} Para más detalles, consulte el folleto de Filtración de gas de proceso de Atlas Copco. ** Por favor póngase en contacto con su representante de ventas de Atlas Copco.

Series DD+/PD+/UD+

Filtros coalescentes de aceite con tecnología patentada Nautilus

La lubricación de los elementos del compresor y la propia instalación del mismo, pueden liberar aerosoles de aceite y polvo húmedo en tu sistema de aire. Los filtros DD+, PD+ y UD + eliminan eficazmente estos contaminantes para proteger tus equipos y procesos . Estas innovadoras soluciones de filtración están diseñadas para proporcionar , de forma rentable , la mejor pureza del aire y cumplir los requisitos los requisitos de calidad actuales, cada vez más estrictos.

Tus beneficios:

- Máxima filtración y desagüe de aerosoles de aceite, polvo húmedo y gotas de agua -La tecnología Nautilus de fibra de vidrio de alta eficacia garantiza una baja caída de presión.
- Tecnología de drenaje patentada Una capa / barrera gruesa estructurada en 3 D proporciona un drenaje eficaz del aceite e impide la re-entrada de gotas de aceite a la corriente de aire.
- Costos mínimos de operación El diseño óptimo y la tecnología de filtrado permiten bajas caídas de presión.
- Mantenimiento económico El armazón acanalado facilita la extracción del contenedor del filtro. El elemento a presión y la conexión de drenaje se han diseñado para una sustitución sin esfuerzo.

El indicador de servicio muestra alertas de mantenimiento (preventivo).

Certificación

- ISO 8573-2:2018
- ISO 12500-1:2007

3 innovaciones patentadas

1. Tecnología Nautilus para el ahorro energético

La tecnología multicapa Nautilus se desarrolló específicamente para mejorar el proceso de coalescencia de aerosoles de aceite . Esto significa que obtendrás mejores resultados de filtración óptimos con una caída de presión menor para minimizar los costos operativos.

2. Tecnología de drenado superior para un rendimiento superior y una larga vida útil

Una exclusiva capa/barrera gruesa con estructura 3D garantiza un drenado eficaz del aceite y evita la re-entrada de gotas de aceite en el flujo de aire. La estructura 3D también ofrece una vida útil de 8,000 horas.

3. Canales de drenado mejorados para un aire puro

El tapón inferior del filtro está diseñado para aumentar la velocidad de drenado del aceite de la barrera optimizando el contacto entre esta barrera y las vías de drenado. Esto garantiza que no se forme una banda húmeda en la barrera y que el riesgo de re-entrada disminuya significativamente, lo que se traduce en un aire más limpio.

Concepto 2-en-1 del UD+ que ahorra dinero y espacio

El UD+ combina dos pasos sencillos de filtración (DD+ y PD+) en uno, una tecnología única para cumplir con los requisitos de calidad de diversas aplicaciones y ofrecer ahorros de energía superiores . El filtro UD+ proporciona la misma pureza de aire que un tren de filtros DD+-PD+ con una caída de presión menor.

- · Ahorra hasta un 50 % de espacio : el concepto 2-en-1 es ideal para aplicaciones donde el espacio es reducido , ya que disminuye la huella medioambiental, la complejidad del sistema y el espacio de instalación.
- Ahorra dinero : instala los filtros UD + y disfruta de ahorros de instalación y de costos de mantenimiento en comparación con los filtros convencionales.

Performance

	DD+	PD+	UD+						
Contaminante		Aerosol de aceite/polvo húmed	0						
Tecnología de filtración		Envueltos							
Método de ensayo	ISO 8573-2:2018, ISO 12500-1:2007								
Transferencia máxima de aceite (mg/m³)*	0.08*	0.008*	0.001						
Clase ISO 8573-1	[2:-:3]	[1::2]	[1:-2]						
Caída de presión húmeda media (mbar)	119	132	220						
Servicio de elementos	De:	spués de 8,000 horas operando o	1 año						
Proceder con	Separación de agua	Separación de agua & DD+	Separación de agua						

^{*} Concentración de aceite de entrada = 10 mg/m³. Aceite = aceite en aerosol y líquido

8 - Filtros de aire comprimido Atlas Copco — Filtros de aire comprimido Atlas Copco - 9

Serie DDp+/PDp+

Filtrado óptimo de polvo seco

Los filtros DDp + y PDp + evitan eficazmente la entrada de polvo, partículas de corrosión, microorganismos, suciedad y material de adsorción en su flujo de aire comprimido. Estas innovadoras soluciones de filtración están diseñadas para proporcionar de forma rentable la mejor pureza del aire y satisfacer las estrcitas exigencias de calidad actuales.

Tus beneficios:

- Máxima eliminación de suciedad, partículas sólidas, microorganismos y partículas de óxido. Los medios de fibra de vidrio plegados de alta eficacia con lana de pre-filtro grueso garantizan una alta capacidad de retención de polvo.
- Costos mínimos de operación El diseño plegado y la tecnología de filtrado óptimos permiten reducir las pérdidas de presión.
- Mantenimiento económico El armazón acanalado facilita la extracción del contenedor del filtro. El elemento a presión y la conexión con el desagüe se han diseñado para una sustitución sin esfuerzo. El indicador de servicio muestra alertas de mantenimiento (preventivo).

Performance

	DDp+	PDp+						
Contaminante	Polvo	seco						
Tecnología de filtración	Pleg	ados						
Método de ensayo	ISO 8573-4:2001, ISO 12500-3:2009							
Eficacia de eliminación de partículas (% en MPPS)	99.92	99.98						
Clase ISO 8573-1	[2:-:3]	[1::2]						
Servicio de elementos	Después de 8,000 horas o 1 añ	o o caída de presión de 350 mbar						
Proceder con	Secador	Secador & DDp+						

Certificación

- ISO 8573-4:2019
- ISO 12500-3:2009

Series QD+

Filtros de vapor de aceite de alto rendimiento

Los filtros QD+ reducen eficazmente los hidrocarburos, olores y vapores de aceite en tu aire comprimido, protegiendo tu inversión, equipos y procesos. El carbón activado macroestructurado reduce el contenido residual de aceite mediante adsorción a menos de 0. 003 mg/m³. La caída de presión es baja y se mantiene constante durante toda la vida útil del filtro.

Tus beneficios:

- Máxima eliminación de vapores de aceite El carbón activado macroestructurado se ha diseñado específicamente para eliminar de forma eficaz y completa los vapores de aceite del aire comprimido con un desprendimiento mínimo de polvo.
- Costos mínimos de operación Bajas pérdidas de presión gracias a un diseño de flujo óptimo.
- Mantenimiento económico El armazón acanalado facilita la extracción de la cubeta del filtro . El elemento a presión y la conexión del desagüe se han diseñado para una sustitución sin esfuerzo . El indicador de servicio muestra alertas de mantenimiento (preventivo).

Performance

QD+
Vapor de aceite
Carbón activo macroestructurado
ISO 8573-5:2001
0.003*
[4:1]
75
Después de 2,000 horas operando o 1 año
Separación de agua UD+ or DD+/PD+ Secador
[2::1]

^{*} En una instalación típica con secador frigorífico y filtro UD

10 - Filtros de aire comprimido Atlas Copco — Filtros de aire comprimido Atlas Copco - 11

Opciones DD+/PD+/UD+/DDp+/PDp+/QD+

- Indicador inteligente
- Cableado externo para el indicador inteligente
- Alarma libre de potencial para manómetro
- Kit de conexión del filtro
- Kit de montaje en pared
- Desagüe mecánico WD 80
- Desagüe electrónico EWD

			DD+/ PD+/ UD+			DDp+/PDp+/QD+	
		Roscado std	inPASS Roscado	Bridado	Roscado std	inPASS Roscado	Bridado
Standard			'				
	Válvula despresurizadora (para DDp+/ PDp+/QD+)	х	х	х	х	х	х
Desagüe	Desagüe flotante (for DD+/PD+/UD+)	х	х				
	Desagüe electrónico EWD (para DD+/ PD+/UD+)			х			
	Indicador emergente	tamaño 7-25			tamaño 7-25		
Indicador (excl. QD+)	Manómetro	tamaño >25			tamaño >25		
	Indicador Inteligente		Х	х		х	х
Bypass			х			x	
Opciones							
	Indicador inteligente	х			х		
	Cableado externo para indicador inteligente	х	х	х	х	х	Х
	Alarma libre de potencial para manómetro	tamaño >25			tamaño >25		
	Kit de conexión del filtro	х	х		х	х	
	Kit de monstaje en pared	х	х		х	х	
	Desagüe mecánico WD 80			х			
	Desagüe electrónico EWD	х	х				

Factores de corrección

Cuando se trabaja con presiones distintas de la nominal, la capacidad real del FAD se calcula multiplicando el factor de corrección por la capacidad nominal del AML. La capacidad de caudal real calculada corresponde a la caída de presión indicada por el AML.

Presión de trabajo en bar (g)	1	2	3	4	5	6	7	8	10	12	14	16
Factor de corrección	0.38	0.53	0.65	0.75	0.83	0.92	1	1.06	1.20	1.31	1.41	1.50

12 - Filtros de aire comprimido Atlas Copco

Tamaños y dimensiones DD+/PD+/UD+/DDp+/PDp+/QD+

Tamaño del filtro con o sin inPASS™		cidad ninal	Presió refer		Pres máx		Col	nexiones			Dime	nsiones			Esp libre camb cartu	io de	Pe	so
										١.	E	3	C					
	l/s	cfm	bar(e)	psig	bar(e)	psig	G	G NPT		inch	mm	inch	mm	inch	mm	inch	kg	lbs
7+	7	15	7	102	16	232	G 1/2	G 1/2 NPT 1/2		4.17	90	3.54	362.6	14.3	90	3.54	1.18	2.60
15+	15	32	7	102	16	232	G 1/2	G 1/2 NPT 1/2		4.17	90	3.54	362.6	14.3	90	3.54	1.24	2.73
25+	25	53	7	102	16	232	G 1/2	NPT 1/2	106	4.17	90	3.54	415.1	16.3	90.5	3.56	1.45	3.20
45+	45	95	7	102	16	232	G 3/4	NPT 3/4	135	5.31	110	4.33	442.6	17.4	110	4.33	2.35	5.18
75+	75	159	7	102	16	232	G 1	NPT 1	135	5.31	110	4.33	527.6	20.8	110	4.33	2.8	6.17
110+	110	233	7	102	16	232	G 1 1/2	NPT 1 1/2	175	6.89	143	5.63	559.1	22.0	130.5	5.14	5.4	11.91
145+	145	307	7	102	16	232	G 1 1/2	NPT 1 1/2	175	6.89	143	5.63	629.1	24.8	130.5	5.14	5.93	13.08
180+	180	381	7	102	16	232	G 1 1/2	NPT 1 1/2	175	6.89	143	5.63	699.1	27.5	130.5	5.14	6.45	14.22
240+	240	509	7	102	16	232	G 2	NPT 2	222	8.74	171	6.73	729.6	28.7	175	6.89	9.54	21.04
200.	200	C2C	7	102	10	222	G 2	NPT 2	222	0.74	171	6.72	022.6	22.4	175	C 00	10.71	23.62
300+	300	636	7	102	16	232	G 2 1/2	NPT 2 1/2	222	8.74	171	6.73	822.6	32.4	175	6.89	10.43	23.00
													"C" dismi				a los	
Con inPASS™										ios /-25	y varia p	or 10 mr	m (0.4") pa	ara los ta	amanos 4	45-300.		
380+	380	805	7	102	14	203	G 3	G 3 NPT 3		9.84	191	7.52	927.1	36.5	200.5	7.89	13.6	29.99
425+	425	901	7	102	14	203	G 3	NPT 3	250	9.84	191	7.52	1043.1	41.1	200.5	7.89	14.95	32.96
510+	630	1081	7	102	14	203	G 3	NPT 3	250	9.84	191	7.52	1281.1	50.4	200.5	7.89	19.6	43.22
Sin inPASS™																		
360+	360	763	7	102	16	232	G 2 1/2	NPT 2 1/2	222	8.74	171	6.73	812.7	32.0	175	6.89	10.2	22.49
430+	430	911	7	102	16	232	G 3	NPT 3	250	9.84	191	7.52	917.2	36.1	200.5	7.89	13.98	30.83
525+	525	1112	7	102	16	232	G 3	NPT 3	250	9.84	191	7.52	1033.2	40.7	200.5	7.89	15.32	33.78
630+	630	1335	7	102	16	232	G 3	NPT 3	250	9.84	191	7.52	1271.2	50.0	200.5	7.89	19.24	42.42
Bridado								n embridada										
480+	480	1017	7	102	16	232		DN 80	370	15	316	12	1295*	51*	1375	54	76	168
630+	630	1335	7	102	16	232		DN 80	370	15	316	12	1295*	51*	1375	54	78	172
850+ T	850	1801	7	102	16	232		N 100	510	20	418	17	796*	31*	200	8	35	78
970+	970	2055	7	102 102	16	232		ON 100	510 510	20	451	18 17	1360* 796*	54*	1500	59 8	141	311 82
1100+ T 1260+	1260	2331	7	102	16 16	232		ON100 ON 100	510	20	418 451	18	1360*	31* 54*	200 1500	59	37 143	315
1600+	1600	3390	7	102	16	232		ON 150	620	24	506	20	1480*	58*	1560	61	210	463
2100+	2100	4450	7	102	16	232		ON 150	640	25	541	21	1555*	61*	1640	65	176	388
2500+	2500	5297	7	102	16	232		ON 150	640	25	541	21	1555*	61*	1640	65	178	392
3000+	3000	6357	7	102	16	232		ON 200	820	32	701	28	1745*	69*	1710	67	420	926
3500+	3500	7416	7	102	16	232		DN 200 DN 200		32	701	28	1745*	69*	1710	67	424	935
4000+	4000	8476	7	102	16	232		DN 200		32	701	28	1745*	69*	1710	67	428	944
5000+	5000	10594	7	102	16	232	DN 200		820	32	701	28	1745*	69*	1710	67	432	952
6000+	6000	12713	7	102	16	232	С	DN 250		36	815	32	2085*	82*	1625	64	671	1479
7000+	7000	14832	7	102	16	232	С	DN 250		36	815	32	2085*	82*	1625	64	679	1497
8000+	8000	16951	7	102	16	232	С	ON 300	1040	41	930	37	2070*	81*	1625	64	896	1975
9000+	9000	19070	7	102	16	232	0	ON 300	1040	41	930	37	2070*	81*	1625	64	900	1984

^{* +60} mm/2.36 in para unidades con desagüe electrónico y +70 mm/2.76 in para un flotador mecánico.

Factores de corrección de la temperatura QD+

A temperaturas más altas, se evapora más aceite del compresor. Cuando la temperatura real de entrada del aire de trabajo difiere de la referencia, divide la capacidad del filtro por los factores de corrección correspondientes para obtener la capacidad correcta.

Temperatura de entrada °C	20	25	30	35	40	45	50	55	60
Temperatura de entrada °F	68	77	96	95	104	113	122	131	140
Factor de corrección sin aceite	1	1	1	1	1	1	1	1	1
Factor de corrección lubricación por aceite	1	1	1	1.2	1.5	1.7	2.1	2.4	2.6

Algunos aspectos ambientales o de proceso podrían causar una mayor cantidad de hidrocarburos u otros compuestos orgánicos volátiles en el aire comprimido. Ponte en contacto con Altas Copco cuando se esperen concentraciones más elevadas.

Serie QDT

Torres de carbón activado para una filtración óptima del vapor de aceite

La torre de carbón activado de alta eficiencia es capaz de eliminar hidrocarburos, lores y vapores de aceite del aire comprimido. Mediante adsorción, el carbón activado reduce el contenido residual de aceite a menos de 0.003 mg/m³. La caída de presión es baja y se mantiene al mínimo durante la vida útil del filtro.

Tus beneficios:

- Máxima eliminación de vapor de aceite -Excelente material de carbón activado
- Baja caída de presión Óptimo paso del flujo interno.
- Alta fiabilidad El robusto diseño del QDT y el riguroso control de calidad del carbón activado optimizan la fiabilidad del filtro.
- Largos intervalos de servicio El alto volumen de material de carbón activado garantiza una larga vida útil, incluso en condiciones de trabajo muy duras.

- Indicador de aceite que garantiza la pureza del aire
- Kit de montaje en pared para facilitar la instalación (20-185 l/s).
- Relleno resistente para cargas de aceite extremas (425-1800 l/s).
- Post-filtro PDp+ con tubo de interconexión incluido (425-1800 l/s).

Performance

	QDT
Contaminante	Vapor de aceite
Método de ensayo	ISO 8573-5:2001, ISO 12500-2:2007
Transferencia máxima de aceite (mg/m³)*	0.003
Caída media de presión en seco (mbar)	125 (QDT 20-310) 72 (QDT 425-1800)
Servicio de elementos	Después de 4,000 horas operando o 1 año (hasta QDT 310) Después de 8,000 horas operando o 1 año (desde QDT 425) Después de 12,000 horas operando o 1 año (opción de servicio pesado)
Proceder con	Separación de agua UD+ or DD+/PD+ Dryer

^{*} Después de UD+ or DD+/PD+.

QDT 20-310

QDT 425-1800

Certificación

ISO 8573-5:2001

Tamaños y dimensiones

	Cana	cidad	Conexiones			Dimen	siones					
Tamaño del filtro	nomi		G o NPT	,	1	ı	В	(:	Peso		
	l/s	cfm	in	mm	in	mm	in	mm	in	kg	lbs	
20	20	42	1/2	490	19	223	9	190	7	7	22	
45	45	95	1	715	28	223	9	190	7	15	33	
60	60	127	1	840	33	223	9	190	7	18	40	
95	95	210	1	715	28	387	15	190	7	29	64	
125	125	265	1 1/2	840	33	387	15	190	7	34	75	
150	150	318	1 1/2	715	28	551	22	190	7	42	93	
185	185	392	1 1/2	840	33	551	22	190	7	50	110	
245	245	519	1 1/2	840	33	715	28	190	7	67	148	
310	310	657	1 1/2	840	33	879	35	190	7	84	185	
425	425	901	DN 80 3"	2148	85	710	28	600	24	264	581	
550	550	1165	DN 80 3"	2190	86	710	28	670	26	302	664	
850	850	1801	DN 100/4"	2320	91	724	29	805	32	391	860	
1100	1100	2331	DN 100/4"	2450	97	934	37	820	32	602	1324	
1800	1800	3814	DN 150/6"	2612	103	1046	41	980	39	882	1940	

Factores de corrección

Para otras temperaturas de entrada de aire comprimido, divide la capacidad del filtro por el siguiente factor de corrección (Kt):

Temperatura de entrada °C	10	15	20	25	30	35	40	45	50	55	60	65	70*	75*	80*
Temperatura de entrada °F	50	59	68	77	96	95	104	113	122	131	140	149	158	167	176
Factor de corrección sin aceite	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Factor de corrección lubricación por aceite	1	1	1	1	1	1	1.2	1.5	1.7	2.1	2.4	3	3.5	4.1	4.9

^{*} Sólo para bridado QDT

Para otras presiones de entrada de aire comprimido, multiplique la capacidad del filtro por el siguiente factor de corrección (Kp):

Presión de entrada bar	3	4	5	6	7	8	9	10	11	12	13
Presión de entrada psi	44	58	73	87	102	116	131	145	160	174	193
Factor de	0.57	0.77	0.83	1	1	1	1	1.05	1.05	1.11	1.18

UD+ & QDT: la combinación ganadora

La combinación de filtros UD+-QDT de Atlas Copco cumple los requisitos de la clase de pureza del aire 1 para aceite total, según la norma ISO 8573-1:2010, en una instalación típica de aire comprimido

UD+	QDT
Eliminación de aceite líquido y aerosoles de aceite	Eliminación de vapores de aceite
Garantizado 0.0009 mg/m³ aerosoles y líquidos	Garantizado 0.003 mg/m³ de vapor
40% de reducción de la pérdida de carga en comparación con DD+/PD+	65% de reducción de la pérdida de carga en comparación con el QDT anterior
50% de reducción en la huella de carbono	Extremadamente compacto en comparación con los diseños de recipiente

Trenes de filtros certificados

Tren de filtros	Clase de pureza según ISO 8573-1:2010	Certificado
UD+ - QDT - DDp+	[2::1]	Sí
UD+ - QDT - DDp+ PDp+	[1::1]	Sí

Serie SFA

Eliminación sin silicona de aerosol de aceite, polvo y vapor de aceite

La máxima pureza del aire es un requisito indispensable para proteger tus instrumentos y productos finales. Nuestros filtros SFA sin silicona impiden eficazmente la entrada de polvo seco y húmedo, partículas, aerosoles de aceite y gotas de agua en tu sistema de aire comprimido. La serie SFA está fabricada y tratada de acuerdo con los elevados estándares de los equipos sin silicona, y está certificada por el Instituto Fraunhofer como libre de silicona garantizada.

Tus beneficios:

- Máxima eliminación de contaminantes Eliminación de polvo seco y húmedo, partículas, aerosoles de aceite y gotas de agua con medios filtrantes de fibra de vidrio y vellón de alta eficacia.
- Ahorro significativo de energía y costos operativos limitados del sistema - El diseño óptimo y el medio filtrante permiten una baja caída de presión.
- Alta fiabilidad Núcleos de acero inoxidable , juntas tóricas dobles, tapas selladas con epoxi y carcasa del filtro con revestimiento anticorrosivo.
- Fácil mantenimiento Nervaduras externas en la carcasa roscada y elementos de presión.
- Control del consumo de energía Indicación de la presión diferencial (indicador para tamaños de 9 a 32 l/s, manómetro para tamaños de 44 a 520 l/s - opcional).

Opciones

Kit de conexión del filtro (9-520 l/s). Kit de fijación en pared (9-520 l/s). Acoplamiento rápido (sólo DD+ y PD+). Desagüe sin pérdidas EWD (sólo DD+ y PD+). Contacto libre de tensión montado en el calibrador diferencial (no para QD+).

Certificación

Certificado de compatibilidad de pinturas (Instituto Fraunhofer).

Fraunhofer

Tamaños y dimensiones

Tamaño Capacidad Capacidad Tamaño nominal* máxima*				Conexiones G o NPT	Dimensiones							Espacio libre para cambio de cartucho		Peso	
del filtro						ı	4	Ē	3	(C	ī)		
DD+, DDp+, PD+, PDp+, QD+	l/s	cfm	l/s	cfm	in	mm	in	mm	in	mm	in	mm	in	kg	lbs
9	9	19	11	23	3/8	90	3.54	61	2.40	268	10.55	75	2.95	1	2.2
17	17	36	21	45	1/2	90	3.54	61	2.40	268	10.55	75	2.95	1.1	2.4
32	32	68	40	85	1/2	90	3.54	61	2.40	323	12.72	75	2.95	1.3	2.9
44	44	93	55	117	3/4 & 1	110	4.33	98.5	3.88	374	14.72	75	2.95	1.9	4.2
60	60	127	75	159	1	110	4.33	98.5	3.88	414	16.3	75	2.95	2.1	4.6
120	120	254	150	318	1-1/2	140	5.51	105	4.13	520	20.47	100	3.94	4.2	9.3
150	150	318	188	399	1-1/2	140	5.51	105	4.13	603	23.47	100	3.94	4.5	9.9
175	175	371	219	464	1-1/2	140	5.51	105	4.13	603	23.47	100	3.94	4.6	10.1
280	280	594	350	742	2 & 2-1/2	179	7.05	121	4.76	689	27.13	150	5.91	6.9	15.2
390	390	827	488	1035	3	210	8.27	128	5.04	791	31.14	200	7.87	11	24.2
520	520	1102	650	1378	3	210	8.27	128	5.04	961	37.83	200	7.87	12.6	27.8

Tamaño	Campaid	lad normal	Presió		Máxima					Dime	nsiones			Peso	
del filtro	Сарасіс	iau nomiai	refere	encia	IVIAXIIIIA	presion	Conexiones	,	Ą	В		C*		re	50
Bridado	l/s	cfm	bar(g)	psig	bar(e)	psig		mm	inch	mm	inch	mm	inch	kg	lbs
480+	480	1017	7	102	16	232	DN 80	370	15	316	12	1295	51	76	168
630+	630	1335	7	102	16	232	DN 80	370	15	316	12	1295	51	78	172
850+T	850	1801	7	102	16	232	DN 100	510	20	418	17	796	31	35	78
970+	970	2055	7	102	16	232	DN 100	510	20	451	18	1360	54	141	311
1100+T	1100	2331	7	102	16	232	DN 100	510	20	418	17	796	31	37	82
1260+	1260	2670	7	102	16	232	DN 100	510	20	451	18	1360	54	143	315
1600+	1600	3390	7	102	16	232	DN 150	620	24	506	20	1480	58	210	463
2100+	2100	4450	7	102	16	232	DN 150	640	25	541	21	1555	61	176	388
2500+	2500	5297	7	102	16	232	DN 150	640	25	541	21	1555	61	178	392
3000+	3000	6357	7	102	16	232	DN 200	820	32	701	28	1745	69	420	926
3500+	3500	7416	7	102	16	232	DN 200	820	32	701	28	1745	69	424	935
4000+	4000	8476	7	102	16	232	DN 200	820	32	701	28	1745	69	428	944
5000+	5000	10594	7	102	16	232	DN 200	820	32	701	28	1745	69	432	952
6000+	6000	12713	7	102	16	232	DN 250	920	36	815	32	2085	82	671	1479
7000+	7000	14832	7	102	16	232	DN 250	920	36	815	32	2085	82	679	1497
8000+	8000	16951	7	102	16	232	DN 300	1040	41	930	37	2070	81	896	1975
9000+	9000	19070	7	102	16	232	DN 300	1040	41	930	37	2070	81	900	1984

^{* +60} mm/2.36 in para unidades con un desagüe electrónico y +70 mm/2.76 in para un

Serie WSD

Separadores de agua de alto rendimiento

El WSD de Atlas Copco evita que el aqua condensada se acumule en tu sistema de aire. El separador de agua viene de serie con los posenfriadores de Atlas Copco y también se puede instalar en cualquier punto de tu sistema.

Tus beneficios:

- Un sistema de aire fiable El desagüe anticorrosión evita que el agua condensada se acumule en su sistema de aire.
- Mantenimiento mínimo El separador de agua no tiene piezas móviles, por lo que no requiere mantenimiento. Dispone de un purgador automático y otro manual.
- Ahorro de energía La función de purga inteligente controla la acumulación de condensado mediante sensores de nivel de líquido. Drena el condensado sólo cuando es necesario para evitar un uso ineficiente del aire comprimido.
- Instalación flexible Los separadores de agua WSD pueden instalarse en cualquier punto de su red de aire.

Tamaños y dimensiones

Rango de Tipo capacidad	o de	Presión máxima de		Conexiones			Po						
	trabajo		Conexiones	Α		В		С		- Peso			
	l/s	cfm	bar(e)	psi	entrada/salida	mm	inch	mm	inch	mm	inch	kg	lbs
WSD 25	7-60	15-127	20	290	G 1	332	13.0	130	5.1	185	7.3	1.1	2.4
WSD 80	50-150	106-318	20	290	G 1½	432	17.0	130	5.1	185	7.3	3.5	7.7
WSD 250	125-350	265-742	20	290	G 2½	532	20.9	160	6.3	230	9.0	12.5	27.6
WSD 750	300-800	636-1695	20	290	83 mm*	532	20.9	160	6.3	230	9.0	14.0	30.9

[·] Brida ciega para ser mecanizada hasta este diámetro.

Filtros de aire comprimido Atlas Copco - 17 16 - Filtros de aire comprimido Atlas Copco

^{*} Presión nominal: 7 bar(e)/102 psig; temperatura: 20°C/68°F.

Series H

Pureza del aire garantizada hasta 350 bar

Los filtros de alta presión reducen eficazmente el aerosol de aceite, el polvo y el polvo húmedo, las partículas, las gotas de agua y el vapor de aceite en su flujo de aire comprimido para proteger tu inversión, tus equipos y tus procesos. Nuestras innovadoras soluciones de filtración de alta presión están diseñadas para proporcionar de forma rentable la mejor pureza del aire y satisfacer las crecientes exigencias de calidad actuales para presiones de trabajo de hasta 350 bares. Todas los armazones de los filtros de alta presión se someten a pruebas hidráulicas para garantizar un funcionamiento seguro y fiable en todo momento. Cada filtro va acompañado de un certificado de prueba de presión.

Tus beneficios:

- Máxima eliminación de contaminantes (polvo seco y húmedo, partículas, aerosoles de aceite y gotas de agua) - Medio filtrante de fibra de vidrio y lana de alta eficacia.
- Ahorro significativo de energía y costos limitados de funcionamiento del sistema - El diseño óptimo y el medio filtrante permiten bajas pérdidas de presión.
- Alta fiabilidad Núcleos de acero inoxidable resistentes y duraderos, juntas tóricas dobles, tapas selladas con epoxi y armazón del filtro con revestimiento anticorrosivo.

Aplicaciones

- Químicos
- Alimentos y bebidas
- Industria manufacturera
- Industria militar
- Petróleo y gas

Performance

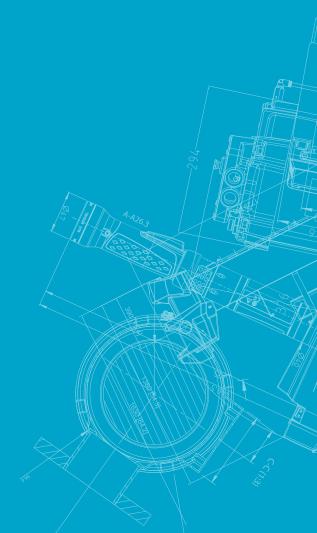
	DDHp+	PDHp+	DDH+	PDH+	QDH+	
Contaminante	Polvo	seco	Aerosol de aceite	e/polvo húmedo	Vapor de aceite	
Método de ensayo		3-4:2019 0-3:2009	ISO 8573 ISO 1250	ISO 8573-5:2001		
Transferencia máxima de aceite (mg/m³)	-	-	0.08*	0.007*	0.003**	
Eficacia de eliminación de partículas (% at MPPS)	99.92 (0.1)	99.98 (0.06)	N/A		N/A	
Clase ISO 8573-1	[2:-:-]	[1::-]	[2:-:3]		[3:::1]	
Caída de presión en seco (mbar)	85	100	N/A		140	
Caída de presión húmeda (mbar)	N/A	N/A	180		N/A	
Servicio del elemento		noras operando o 1 resión 350 mbar	Después de 4,00 o 1	Después de 1,000 horas operando o 1 año		
Proceder con	N/A	DDHp+	N/A	DDH+	DDH+/PDH+	

Instala siempre un sistema de separación de agua líquida delante de un filtro. La separación de agua no es necesaria en la línea de alta presión si hay una PDP suficientemente baja en la línea de baja presión (por ejemplo, patín de nitrógeno, línea de baja presión con secador de adsorción).

Tamaños y dimensiones

Tamaño del							Dime	nsiones				
filtro	C	apacidad nor	mal	Conexiones		A		В		c	Pe	eso
DDH, DDHp, PDH, PDHp, QDH	m³/h	l/s	cfm	in	mm	in	mm	in	mm	in	kg	lbs
20 bar aluminio												
15+	54	15	32	3/8	90	3.5	80	3.1	185	7.3	1.0	2.2
32+	115	32	68	1/2	90	3.5	80	3.1	185	7.3	1.1	2.4
55+	198	55	117	1/2	90	3.5	80	3.1	240	9.4	1.3	2.9
80+	288	80	170	3/4 & 1	110	4.3	100	3.9	260	10.2	1.6	3.5
110+	396	110	233	1	110	4.3	100	3.9	300	11.8	2.1	4.6
200+	720	200	424	1 1/2	140	5.5	131	5.2	410	16.1	4.2	9.3
270+	972	270	572	1 1/2	140	5.5	131	5.2	490	19.3	4.5	9.9
330+	1188	330	699	1 1/2	140	5.5	131	5.2	490	19.3	4.6	10.1
490+	1764	490	1038	2 & 2 1/2	179	7	166	6.5	575	22.6	6.9	15.2
50 bar aluminio												
160+	160	44	94	1/4	63	2.5	63	2.5	150	5.9	0.3	0.7
250+	250	69	147	3/8	63	2.5	63	2.5	190	7.5	0.3	0.7
450+	450	125	265	1/2	114	4.5	114	4.5	305	12.0	2.6	5.7
550+	550	153	324	3/4	114	4.5	114	4.5	305	12.0	2.6	5.7
835+	835	232	491	1	114	4.5	114	4.5	395	15.6	3.3	7.3
1250+	1250	347	736	1 1/2	146	5.8	146	5.8	435	17.1	7.5	16.5
1725+	1725	479	1015	1 1/2	146	5.8	146	5.8	435	17.1	7.5	16.5
1925+	1925	535	1133	2	146	5.8	146	5.8	435	17.1	7.5	16.5
3200+	3200	889	1883	2	146	5.8	146	5.8	635	25.0	10	22.0
50 bar acero inoxid												
100+	100	28	59	1/4	85	3.4	85	3.4	202	8.0	1.7	3.7
200+	200	56	118	3/8	85	3.4	85	3.4	227	8.9	2	4.4
340+	340	94	200	1/2	85	3.4	85	3.4	257	10.1	2.2	4.8
500+	500	139	294	3/4	110	4.3	110	4.3	270	10.6	4	8.8
1000+	1000	278	589	1	110	4.3	110	4.3	422	16.6	5	11.0
1700+	1700	472	1000	1 1/2	150	5.9	150	5.9	517	20.4	15	33.1
2040+ 3400+	2040 3400	567 944	1200 2000	2	150 150	5.9 5.9	150 150	5.9 5.9	517	20.4	15 21	33.1 46.3
100 bar acero inox		944	2000	2	150	5.9	150	5.9	817	32.2	21	46.3
100 bar acero mox	100	28	59	1/4	65	2.6	65	2.6	135	5.3	3.2	7.1
315+	315	88	185	1/4	65	2.6	65	2.6	250	9.8	5.6	12.3
460+	460	128	271	3/4	88	3.5	88	3.5	275	10.8	6.1	13.4
680+	680	189	400	1	135	5.3	135	5.3	265	10.8	10.5	23.1
1200+	1200	333	706	1	135	5.3	135	5.3	480	18.9	14.7	32.4
1700+	1700	472	1000	1 1/2	150	5.9	150	5.9	525	20.7	22	48.5
3400+	3400	944	2000	2	150	5.9	150	5.9	815	32.1	28	61.7
350 bar acero inox		344	2000	2	130	5.5	130	5.5	013	32.1	20	01.7
48+	48	13	28	1/4	41	1.6	41	1.6	103	4.0	1.6	3.5
111+	111	31	65	1/4	65	2.6	65	2.6	135	5.3	3.2	7.1
255+	255	71	150	1/2	88.5	3.5	88.5	3.5	210	8.2	5.6	12.3
510+	510	142	300	3/4	88.5	3.5	88.5	3.5	280	10.9	6.1	13.4
750+	750	208	441	1	150	5.9	150	5.9	330	12.9	14.5	32.0
1330+	1330	369	783	1	150	5.9	150	5.9	480	18.7	17.4	38.3
15501	1330	303	703		150	5.5	150	5.5	700	10.7	17.4	30.3

Factores de corrección


barg									
barg									
	-	-	-	-	-	14	16	18	20
psig	-	-	-	-	-	203	232	261	290
						0.9	0.95	1	1.05
oxidable	•								
barg	4	6	8	10	15	20	30	40	50
psig	58	87	116	145	218	290	435	581	726
	0.14	0.22	0.28	0.34	0.47	0.56	0.7	0.85	1
barg	20	30	40	50	60	70	80	90	100
psig	290	435	581	726	871	1016	1161	1306	1451
	0.45	0.57	0.68	0.8	0.84	0.88	0.92	0.96	1
barg	-	-	50	100	150	200	250	300	350
psig	-	-	726	1451	2177	2903	3628	4354	5080
			0.73	0.78	0.82	0.87	0.91	0.96	1
	barg psig barg psig	psig 58 0.14 barg 20 psig 290 0.45 barg -	barg 4 6 psig 58 87 0.14 0.22 barg 20 30 psig 290 435 0.45 0.57 barg	barg 4 6 8 psig 58 87 116 0.14 0.22 0.28 barg 20 30 40 psig 290 435 581 0.45 0.57 0.68 barg 50 psig - 726	barg 4 6 8 10 psig 58 87 116 145 0.14 0.22 0.28 0.34 barg 20 30 40 50 psig 290 435 581 726 0.45 0.57 0.68 0.8 barg 50 100 psig - 726 1451	barg 4 6 8 10 15 psig 58 87 116 145 218 0.14 0.22 0.28 0.34 0.47 barg 20 30 40 50 60 psig 290 435 581 726 871 0.45 0.57 0.68 0.8 0.84 barg 50 100 150 psig - 726 1451 2177	barg 4 6 8 10 15 20 psig 58 87 116 145 218 290 0.14 0.22 0.28 0.34 0.47 0.56 barg 20 30 40 50 60 70 psig 290 435 581 726 871 1016 0.45 0.57 0.68 0.8 0.84 0.88 barg 50 100 150 200 psig - 726 1451 2177 2903	barg 4 6 8 10 15 20 30 psig 58 87 116 145 218 290 435 0.14 0.22 0.28 0.34 0.47 0.56 0.7 barg 20 30 40 50 60 70 80 psig 290 435 581 726 871 1016 1161 0.45 0.57 0.68 0.8 0.84 0.88 0.92 barg 50 100 150 200 250 psig - 726 1451 2177 2903 3628	barg 4 6 8 10 15 20 30 40 psig 58 87 116 145 218 290 435 581 0.14 0.22 0.28 0.34 0.47 0.56 0.7 0.85 barg 20 30 40 50 60 70 80 90 psig 290 435 581 726 871 1016 1161 1306 0.45 0.57 0.68 0.8 0.84 0.88 0.92 0.96 barg 50 100 150 200 250 300 psig 726 1451 2177 2903 3628 4354

Filtros de aire comprimido Atlas Copco - 19 18 - Filtros de aire comprimido Atlas Copco

^{*} Concentración de aceite de entrada = 10 mg/m³. Aceite = aerosol de aceite y líquido. ** Después de DD+/PD+ con una concentración de aceite de entrada de 10 mg/m³.

