Customer Day 2024

January 2024 Cahyo W. & Aris H.

Atlas Copco

1]

**

Why is energy recovery?

The Why

TOTAL COST OF OWNERSHIP %

We focus on the energy efficiency of our products

*Average based on an average running of 4000 hours per a nnum over 10 years

Why Energy Recovery?

45% of all industrial applications use hot water or steam

50% of compressed air systems have big heat recovery potential

Increasing incentives for reducing energy and CO₂

Increased energy prices created a huge market demand for energy saving

Industries that need process heat

How much energy can be recovered?

How much of the compressor power is converted to heat?

How much of the energy input of a compressor is converted to heat?

Because the compressed air exits the compressor around 10°C warmer than the ambient

How much of the compressor power is converted to heat?

Atlas Copco

How much of the compressor power is converted to heat?

payback time in most cases is well below 1 year

Typical installation ZR/ZH : different components of an ER installation

ER 90-1600

Atlas Copco Manufactured ER pump

Certificated expansion vessel

VSD Water Pump

MK5s Controller

Energy Recovery models

90	275	425	630	900	1600
Model number = max shaft power(kW) water cooled compressor(s)					

ER 90 - 1600

ER 90-1600 Wide Combination

Case story

APPLICATION : Steam Boiler pre heating water

Savings by ER : • Money saving : 9.000 \$/month • Less CO₂ emissions : 90.000 kg/month

Use of hot dry air for *Guaranteed -40° C Pressure Dewpoint*

No PDP fluctuations

MDG

guaranteed -40 °C PDP

ZERO

Energy Consumption during operating

No air loss

"No" power consumption

No regeneration heater

No blower or pump

Working principle

- 1 Hot compressed air
- 2 Heat Exchanger
- 3 Wet compressed air
- 4 Dried compressed air
- 5 Dry regeneration compressed air
- 6 Heated regeneration compressed air
- 7 Wet regeneration air
- 8 Process cooler

Product range

• Smart Control

Self-Learning algorithm

PDP improvement

Increased Durability

No CAN or L/UL signal needed

Highlights

"Zero" power consumption

Single inlet makes complex installations possible

-40°C PDP guaranteed

Maintenance intervals increased from 2 to 5 years

Smart controls No CAN or L/UL connections

Low Carbon Utility Room

Steam Compressor

and the

200

-`@`-

33

Energy Recovery

< 🗍

1

-

ZR

3

WANT TO KNOW MORE? SCAN HERE!

COMMITTED TO

SUSTAINABLE PRODUCTIVITY.

